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Abstract

We investigate in this paper an alternative method to simulation based recursive importance
sampling procedure to estimate the optimal change of measure for Monte Carlo simulations.
We propose an algorithm which combines (vector and functional) optimal quantization with
Newton-Raphson zero search procedure. Our approach can be seen as a robust and automatic
deterministic counterpart of recursive importance sampling by means of stochastic approxi-
mation algorithm which, in practice, may require tuning and a good knowledge of the payoff
function in practice. Moreover, unlike recursive importance sampling procedures, the proposed
methodology does not rely on simulations so it is quite generic and can come along on the top
of Monte Carlo simulations.

We first emphasize on the consistency of quantization for designing an importance sampling
algorithm for both multi-dimensional distributions and diffusion processes. We show that the
induced error on the optimal change of measure is controlled by the mean quantization error.

We illustrate the effectiveness of our algorithm by pricing several options in a multi-dimensional
and infinite dimensional framework.

Keywords: monte carlo simulation, importance sampling, stochastic approximation, vector
quantization, functional quantification.

Introduction

In this paper, we are interested in one of the most basic problem of numerical probability which
consists in the computation of the expectation

E[F (X)] (1)

whereX : (Ω,A,P)→ (E, |.|E) is a random vector taking values in a Banach space E and F : E → R
is a Borel function such that E[F (X)2] < +∞. When the space E is Rd (equipped with the
Euclidean norm) we will refer to the finite (multi) dimensional setting and when the space E is
C([0, T ],Rd) (equipped with the supremum norm) to deal with the case where X is a continuous
path-dependent diffusion process, we will refer to the infinite dimensional setting. For instance
in mathematical finance, computing the price of an option and the sensitivities of this price with
respect to some parameters amounts to estimate such a quantity. When no closed or semi-closed
formulas are available, one often relies on Monte Carlo simulation which remains the most widely
used numerical method in this context.
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Variance reduction methods are often used to increase the accuracy of a Monte Carlo simula-
tion or reduce its computation time. The most common variance reduction methods are antithetic
variables, conditioning, control variate, importance sampling and stratified sampling. Adaptive
variance reduction methods have been recently investigated to take advantage of the random sam-
ples used to compute the expectation above in order to optimize at the same time the variance
reduction tool (see [11] and the references therein). In practice, it is not clear that this adaptive
one step Monte Carlo procedure is better than the basic two step procedure: optimizing the vari-
ance reduction tool (e.g. the optimal change of measure in an importance sampling framework)
using a small number of samples, then computing the expectation of interest with this optimized
parameter.

In this paper, we are interested in variance reduction by importance sampling (IS). We denote by
p the probability density function of X and we consider a parameterized family of density functions
(pθ)θ∈Θ: we will choose Θ = Rd in the finite dimensional setting and Θ = L2([0, T ],Rq), where
q is the dimension of the Brownian motion driving the dynamic of the d-dimensional process X,
when dealing with the infinite dimensional setting. This general framework is the one investigated
in [15]. In this introduction we will present the importance sampling paradigm in the finite multi-
dimensional case, i.e. we set E = Rd. We suppose that p > 0, λd − a.e., where λd denotes the
Lebesgue measure on (Rd,Bor(Rd)) and we set p0 = p. Moreover, we focus throughout all the
paper on importance sampling by mean translation, i.e. we will consider that for all θ ∈ Rd, for
all x ∈ Rd, pθ(x) = p(x − θ). The basic idea of IS is to introduce the parameter θ in the above
expectation (1) using the invariance by translation of the Lebesgue measure, for every θ ∈ Rd

E[F (X)] = E
[
F (X + θ)

p(X + θ)

p(X)

]
, (2)

and among all these random variables with the same expectation, we want to select the one with
the lowest variance, i.e. the one with the lowest quadratic norm

Q(θ) := E
[
F 2(X + θ)

p2(X + θ)

p2(X)

]
, θ ∈ Rd.

A reverse change of variable shows that:

Q(θ) = E
[
F 2(X)

p(X)

p(X − θ)

]
, θ ∈ Rd. (3)

Now if the density function p of X satisfies

(i) p is log-concave and (ii) lim
|x|→+∞

p(x) = 0 (4)

and
Q(θ) < +∞, ∀θ ∈ Rd (5)

then, one shows that the functionQ is finite, convex and goes to infinity at infinity, thus arg minθQ ={
θ ∈ Rd | DQ(θ) = 0

}
, where DQ is the gradient of Q, is non empty (for a proof, we refer to [15]).

Now, if DQ admits a representation as an expectation, then it is possible to devise a recursive
Robbins-Monro (RM) procedure to approximate the optimal parameter θ∗ minimizing Q, namely

θn = θn−1 − γnK(θn−1, Xn), n ≥ 1 (6)

where (Xn)n≥1 is an i.i.d. sequence of random vectors having the distribution of X, (γn)n≥1 is a
positive deterministic sequence satisfying,∑

n≥1

γn = +∞, and
∑
n≥1

γ2
n < +∞,
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and K is naturally defined by the formal differentiation of Q: for every x ∈ Rd,

K(θ, x) = F 2(x)
p(x)

p2(x− θ)
Dp(x− θ). (7)

IS by means of stochastic approximation has been investigated by several authors (see e.g. [8], [5]
and [6]) in order to estimate the optimal change of measure by a RM procedure. It has recently
been studied in the Gaussian framework in [1] (see also [2]) where (7) is used to design a stochastic
gradient algorithm. However, the regular RM procedure (7) suffers from an instability issue coming
from the fact that the classical sub-linear growth Assumption in quadratic mean in the Robbins-
Monro Theorem

∀θ ∈ Rd, E
[
K(θ,X)2

] 1
2 ≤ C (1 + |θ|) (8)

is only fulfilled when F is constant, due to the behaviour of the annoying term p(x)/p(x− θ) as θ
goes to infinity. Consequently, θn can escape at infinity at almost every implementation as pointed
out in [1]. To circumvent this problem, a “projected version” of the procedure based on repeated
reinitializations when the algorithms exits from an increasing sequence of compact sets (while the
step γn keeps going to 0) was used. This approach is known as the projection “ la Chen” (see
for instance [3], [4] and [14]). A central limit theorem for this version of the recursive importance
sampling algorithm is proved in [13]. This kind of technique forces the stability of the algorithm
and prevents explosion. From a numerical point of view, this projected algorithm is known to
converge if the sequence of compact sets have been specified suitably, which is not an easy task in
practice.

In [15], the authors propose a third change of variable to plug back the parameter θ into F

DQ(θ) = E [K(θ,X)] = E
[
F 2(X − θ) p2(X − θ)

p(X)p(X − θ)
Dp(X − 2θ)

p(X − 2θ)

]
, (9)

which has a known controlled growth rate at infinity in common applications. For instance, if we
suppose that there exists λ > 0, such that

∀ x ∈ Rd, |F (x)| ≤ C eλ|x|,

we can define a new function H by setting

H(θ, x) := e−2λ|θ|F 2(x− θ) p2(x− θ)
p(x)p(x− θ)

Dp(x− 2θ)

p(x− 2θ)
(10)

Under additional assumptions on the density function p, they derive a new stochastic approximation
algorithm using H which satisfies the sub-linear growth condition (8) so that it a.s. converges
and is stable without having to apply projection technique. They also extend this construction
to exponential change of measure (Esscher transform) and to diffusion process using Girsanov
transform. However, from a numerical point of view, the tuning of the algorithm needs a good
knowledge of the behavior of F at infinity. In practical implementations, recursive importance
sampling methods using stochastic implies specific tuning of the step sequence or the sequence of
compact sets which in both cases strongly depends of the payoff function F .

In order to get rid of this problem, [12] proposes an optimization Newton’s algorithm to estimate
the optimal change of measure in a Gaussian framework. They approximate DQ(θ) and D2Q(θ)

(based on the representation (7) with p(x) = 1√
2π
e−
|x|2
2 , x ∈ Rd) using Monte Carlo simulation
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with n samples

DQn(θ) =
1

n

n∑
k=1

(θ −Xk)F
2(Xk)e

−θ.Xk+
|θ|2
2

D2Qn(θ) =
1

n

n∑
k=1

(
Id + (θ −Xk) (θ −Xk)

T
)
F 2(Xk)e

−θ.Xk+
|θ|2
2

where (Xk)1≤k≤n is an i.i.d. sequence of d-dimensional standard normal vectors. The (unique)
minimum of Q is approximated by the (unique) zero θn of Qn which can be computed using a
deterministic Newton-Raphson algorithm. Moreover, several asymptotic properties are addressed.

Deterministic optimization using a large deviation argument has been investigated in [7]. The

optimal change of measure is selected as a local maximum of θ 7→ log |F (θ)| − |θ|
2

2 . This can be
achieved only under some regularity assumptions on the function F . Moreover, from a theoretical
point of view this choice is not optimal.

In this work, we propose and study an alternative deterministic procedure which is not adaptive
and does not need specific payoff-dependent tuning. The optimal change of measure is estimated
using a robust and automatic Newton-Raphson’s algorithm combined with optimal (vector and
functional) quantization. The main advantage of our procedure is that it can be used as a generic
variance reduction method which comes upstream the Monte Carlo simulation framework. More-
over, we will focus on one very common situation in mathematical finance, that is, Monte Carlo
simulation that are based on multi-factor Brownian diffusions. Indeed, the presented method easily
extends to this framework using quadratic optimal functional quantization of stochastic processes
(see e.g. [19]). It is particularly adapted for financial institutions since the methodology we propose
can come along on the top of Monte Carlo simulations. Numerical tests ilustrate the effectiveness
of our approach in both multi-dimensional and infinite dimensional frameworks.

The paper is organized as follows. Section 1 presents several results about vector and functional
quantization that are required in the following. We focus on the functional quantization of diffusion
processes. Section 2 presents the quantization based recursive importance sampling algorithm. The
emphasis is on the consistency of quantization for designing an importance sampling algorithm
for both multi-dimensional distributions and diffusion processes. We show in particular that the
induced error on the optimal change of measure is controlled by the mean quantization error. In
section 3, we provide numerical experiments of our approach by considering option pricing problems
arising in mathematical finance.

1 Some results on optimal quantization

Before, dealing with the construction of the quantization based IS algorithm, we provide with some
background on quantization of Hilbert spaces and Gaussian processes viewed as L2

T -valued random
vectors.

1.1 Introduction to quantization of random variables

Let N ∈ N∗. The principle of the N -quantization of a random variable X taking its values in
a separable Hilbert space E is to study the best ‖.‖p-approximation of X by E-valued random
vectors taking at most N values. The norm ‖.‖p is the usual norm on LpE(Ω,P) defined by ‖X‖p =(
E
[
|X|pE

])1/p
. When p = 2, we talk about quadratic optimal quantization. If E = Rd, one speaks

about vector quantization. When E is an infinite dimensional Hilbert space like L2 ([0, T ], dt)

endowed with the usual norm |f |E =
(∫ T

0 f(t)2dt
) 1

2
, we talk about functional quantization.
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Definition 1.1 (Voronoi tessellation). Let N ≥ 1 and x := (x1, · · · , xN ) ∈ EN be a N -tuple re-
ferred to us by a N−quantizer and let Projx : E → {x1, · · · , xN} be a projection following the clos-
est neighbour rule. Then, the Borel partition C = {C1, · · · , CN} of E defined by Ci :=Proj−1

x (xi),
i = 1, · · · , N and satisfying

Proj−1
x ({xi}) ⊂

{
y ∈ E, |xi − y|E = min

1≤j≤N
|xj − y|E

}
, 1 ≤ i ≤ N.

is called a Voronoi tessellation of E induced by x.

One defines the Voronoi quantization of X induced by x by

X̂x = Projx (X) =
N∑
i=1

xi1{X∈Ci}.

The discrete random variable X̂x (one will sometimes simply write X̂ if there is no ambiguity)
is the best Lp(P)-approximation of X among all measurable random variable taking values in
x := {x1, · · · , xN}. In fact, for any random variable Y : Ω→ {x1, · · · , xN}, we have∣∣∣X − X̂∣∣∣

E
≤ |X − Y |E P− a.s.

so that
∥∥∥X − X̂∥∥∥

p
≤ ‖X − Y ‖p.

For any fixed N -quantizer x := (x1, · · · , xN ), we associate the Lp(P)-mean error
∥∥∥X − X̂∥∥∥

p

induced by x. One aims at finding a N−tuple x ∈ EN which minimizes the Lp-mean error over
EN . It amounts to minimizing the function

QXN : (x1, · · · , xN ) 7→
∥∥∥X − X̂∥∥∥

p
=

∥∥∥∥ min
1≤i≤N

|X − xi|E
∥∥∥∥
p

The function QXN reaches its minimum at one (at least) tuple x∗ called an optimal N -quantizer.
This infimum is in general not unique, except in some cases, in particular when d = 1 and the
density of X is log-concave. Note that card(x∗)= N if card(supp(PX))≥ N . Moreover, the Lp-
mean quantization error eXN,p := minQXN converges toward 0 and for non-singular Rd-valued random

vectors, the rate of convergence of convergence of eXN,p is ruled by the so-called Zador Theorem (see
[10]).

Theorem 1.1. Assume that X ∈ Lp+δRd (P) for some δ > 0. Let f denote the density of the absolutely
continuous part of PX (possibly, f ≡ 0). Then,

lim
N→+∞

N1/deXN,p = qp(d)

(∫
f(x)d/d+pdx

)(d+p)/dp

, (11)

where qp(d) is a strictly positive depending only on p and on the dimension d.

For further theoretical results on optimal vector quantization we refer to [10]. One of the
important issues for the Numerical Probabilities viewpoint is to compute the optimal quantizers
and the associated weights (for the applications to Numerical Probabilities in the finite dimensional
case, see the seminal paper [18]). However, due to the non-uniqueness of the optimal quantizers
in the general framework, specially when E = Rd with d ≥ 2, we are usually leaded to search
for stationary quantizers, i.e. N -quantizers x satisfying ∇QXN (x) = 0. We will see further on that
stationary quantizers are an important class of quantizers for numerics. The commonly used result
is the quadratic case (when p = 2) recalled below.
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Definition 1.2 (Stationarity). Let x := (x1, · · · , xN ) ∈ EN be anN -quantizer and C := {C1, · · · , CN}
its associated Voronoi partition. The random vector X̂ is called a stationary N -quantization of X
if it satisfies

∀ i 6= j, xi 6= xj and P (X ∈ ∪i∂Ci(x)) = 0 (12)

(PX -negligible boundary of the Voronoi cells) and

E
[
X | X̂

]
= X̂.

We have in particular, E[X] = E[X̂].

1.2 Some backgrounds on functional quantization

A rigorous extension of optimal vector quantization to functional quantization is done in [16]. The
vector quantization problem is transposed to random vectors in an infinite dimensional Hilbert
space, in particular, to stochastic processes (Xt)t∈[0,T ] viewed as random vectors with values in

L2 ([0, T ], dt). In [20], numerical performances of quadratic functional quantization with appli-
cations to finance is investigated. In particular, the roles played by product quantizers and the
so-called Karhunen-Loève (K-L) expansion of Gaussian processes are pointed out.

In what follows, we will start by the functional quantization of the standard Brownian motion
since everything can be made explicit for this process. Then we will show how to construct from
optimal quadratic functional quantization of Brownian motion explicit (non-Voronoi) quantization
of Brownian diffusions.

Assume that the separable Hilbert space E is L2
T := L2([0, T ], dt), with 〈f, g〉 =

∫ T
0 f(t)g(t)dt.

One defines the covariance operator CW of the Brownian motion (Wt)t∈[0,T ], for every f ∈ L2
T by

CW (f) := E [〈f,W 〉W ] =

(
t 7→

∫ T

0
f(s)(s ∧ t)ds

)
.

This operator is symmetric positive and can be diagonalized in the K-L orthonormal basis of L2
T

(en)n≥1 with eigenvalues (λn)n≥1 given by

en(t) =

√
2

T
sin

(
π

(
n− 1

2

)
t

T

)
, λn =

(
T

π
(
n− 1

2

))2

, n ≥ 1.

Moreover, one may expand the paths of (W )t∈[0,T ] on this basis, i.e.

W
L2
T=
∑
n≥1

〈W, en〉 en, P-a.s. (13)

Using Fubini’s Theorem and the orthonormality of the K-L basis, one obtains for ` ≥ 1, p ≥ 1

E [〈W, e`〉 〈W, ep〉] = 〈CW (e`), ep〉 = λ`δ`p

where δ`p denotes the Kronecker symbol. Consequently, the Gaussian sequence (〈W, e`〉)`≥1 is
pairwise non-correlated so that these random variables are independent. Hence, (13) can be written

W
L2
T=
∑
n≥1

√
λkξnen,

where ξn := 〈W, en〉 /
√
λn, n ≥ 1, is an i.i.d. sequence of random variables with standard normal

distribution.
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Now the idea of product functional quantization using at most N elementary quantizers is
to quantize these random coordinates ξn, i.e. for every n ≥ 1, one considers an optimal Nn-

quantization (Nn ≥ 1) of ξn, denoted ξ̂n where ξ̂n := Projxn (ξn), xn :=
(
xNn1 , · · · , xNnNn

)
is the

unique optimal Nn-quantizer of the normal distribution and N1 × · · · ×Nn ≤ N , N1, · · · , Nn ≥ 1.
For n large enough, we set Nn = 1, ξ̂n = 0 (which is the optimal 1-quantization) and we define the
product quantizer by (the finite sum)

Ŵt =
∑
n≥1

√
λnξ̂nen(t).

The product quantizer χ that produces the above Voronoi quantization Ŵ is defined by

χi(t) =
∑
n≥1

√
λnxinen(t), i = (i1, · · · , in, · · · ) ∈

∏
n≥1

{1, · · · , Nn} .

and for every multi-index i ∈
∏
n≥1 {1, · · · , Nn}, the associated Voronoi cell of χ is

Ci(χ) =
∏
n≥1

√
λnCin(xn).

Moreover, from the independence of the normal random variables (ξn)n≥1 the weights P
(
Ŵ = χi

)
can be computed explicitly

P
(
Ŵ = χi

)
=
∏
n≥1

P (ξn ∈ Cin(xn)) .

For numerical purposes, one may be interested by the theoretical rate of convergence for the quan-
tization error of the Brownian motion and the stationarity of K-L product quantizer.

Proposition 1.2 (stationarity, see [20]). The product quantizer of the Brownian motion defined
above is a stationary quantizer, i.e.

E
[
W | Ŵ

]
= Ŵ .

Proposition 1.3 (convergence rate, see [16]). For every N ≥ 1, there exists an optimal product

quantizer of size at most N , denoted Ŵ of the Brownian motion defined as the solution to the
minimization problem

min
{∥∥∥W − Ŵ∥∥∥

2
, N1, · · · , Nn ≥ 1, dN := N1 × · · · ×Nn ≤ N,N ≥ 1

}
(14)

Furthermore, these optimal product quantizer induces a rate optimal sequence, i.e.∥∥∥W − Ŵ∥∥∥
2
≤ C T

(logN)
1
2

.

for some real constant C > 0

To conclude this section, we shortly describe a constructive way to quantize scalar brownian

diffusions (for more details see e.g. [20]). The rate is O
(

(logN)−
1
2

)
like for the Brownian motion

as soon as the diffusion coefficient is not too degenerate. Consider the homogeneous Brownian
diffusion process:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0,
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where b and σ are continuous on R with at most linear growth (i.e. |b(x)| + |σ(x)| ≤ C(1 + |x|))
so that a weak solution to the equation exists. Let (χN )N≥1 be a sequence of rate-optimal K-L
product quantizers of the Brownian motion. For every multi-index i ∈

∏
n≥1 {1, · · · , Nn}, with

N1 × · · · ×Nn ≤ N , consider xi the solution of the following integral equations

dxi(t) =

(
b(xi(t))−

1

2
σσ′(xi(t))

)
dt+ σ(xi(t))dχi(t), (15)

where σ′ is the first derivative of σ. To simplify notations we consider the simpler notation i for
the multi-index i. Now set

X̃t =
N∑
i=1

xi(t)1Ci(χi)(W ), N ≥ 1. (16)

The process X̃t is a non-Voronoi quantization but it is easily computable once the above integral

equations are solved since the weights P
(
Ŵ = χi

)
are known. However the ODE (15) has no

explicit solution in general. Then, for numerical implementation purposes, we use discretization
schemes like Runge-Kutta one to estimate these quantizers. One shows that the quantized process
X̃ converges toward the process X with respect to the quadratic norm and the rate of convergence
is given by the following result.

Proposition 1.4 (See [17]). Assume that b is differentiable, σ is positive twice differentiable and
that b′ − bσ′σ −

1
2σσ

′′ is bounded. Then∥∥∥X − X̃∥∥∥
2

= O
(

(logN)−
1
2

)
.

1.3 Quadrature formulae for numerical integration

We conclude this first section on optimal (quadratic) quantization by illustrating how to use it for
numerical integration of functions defined on the Hilbert space E. We provide some quadrature
formulae using the above quantization errors. We refer to [20] for the proofs. The main idea is that
we know that X̂ is close to X in distribution and if one has a numerical access to the N -quantizer
x with the associated weights sequence (P (X ∈ Ci(x)))1≤i≤N of the quantization X̂ then for every
Borel functional F : H → R, the computation of the expectation

E
[
F (X̂)

]
=

N∑
i=1

F (xi)P (X ∈ Ci(x))

is straightforward. The proposition below gives some error bounds for E [F (X)] − E[F (X̂)] based

on Lp-quantization error (p = 2 or 4) of
∥∥∥X − X̂∥∥∥

p
.

Let x be a stationary quantizer for X with X̂ its associated Voronoi quantization and F : E → R
be a Borel functional defined on E.

(i) Inequality for convex functionals: If F is convex then

E
[
F (X̂)

]
≤ E [F (X)] .

(ii) Lipschitz functionals:
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– If F is Lipschitz continuous then∣∣∣E [F (X)]− E
[
F (X̂)

]∣∣∣ ≤ [F ]Lip

∥∥∥X − X̂∥∥∥
2
.

– Let θ : E → R+ be a nonnegative convex function such that θ(X) ∈ L2(P). If F is
locally Lipschitz with at most θ-growth, i.e. |F (x)− F (y)| ≤ [F ]Lip|x− y| (θ(x) + θ(y))
then F (X) ∈ L1(P) and∣∣∣E [F (X)]− E

[
F (X̂)

]∣∣∣ ≤ 2[F ]Lip

∥∥∥X − X̂∥∥∥
2
‖θ(X)‖2 .

(iii) Differentiable functionals: If F is differentiable on E with an α-Hölder differential DF (α ∈
[0, 1]), then ∣∣∣E [F (X)]− E

[
F (X̂)

]∣∣∣ ≤ [DF ]α

∥∥∥X − X̂∥∥∥1+α

2
.

Other quadrature formulae can be derived based on regularity assumptions on F (for more
details we refer to [20]).

2 Quantized importance sampling algorithm

2.1 The finite-dimensional setting

In order to derive the existence of a unique minimum for the function Q, we make the following
assumption:

Assumption 1.
p is strictly log-concave and lim

|x|→+∞
p(x) = 0.

Moreover, the differentiation of the quadratic norm Q (with respect to θ) defined by (3) is required
further on and we need for this purpose the following assumptions on the probability density
function p:

Assumption 2. The density function p is twice differentiable and satisfies for some α ∈ (0, 1]

(i)
∣∣∣Dpp ∣∣∣ = O(|x|α) as x→ +∞.

(ii) ∃ C > 0 such that ∀x ∈ Rd, 1
p(x)

∣∣D2p
∣∣ (x) ≤ C

(
|x|2α + 1

|x|1−α

)
, where D2p is the Hessian of

p.

Proposition 2.1. Suppose that Assumptions 1 and 2 are satisfied and the function F satisfies

∀ θ ∈ Rd, E
[
F 2(X)

p(X)

p(X − θ)

]
< +∞ and ∀ M > 0, E

[
F 2(X)|X|αeM |X|α

]
< +∞.

Then, the function Q defined by (3) is finite, strictly convex, differentiable on Rd, goes to infinity as
|θ| goes to infinity. As a consequence, the function Q admits a unique global minimum θ∗ satisfying

Arg minQ =
{
θ ∈ Rd | DQ(θ) = 0

}
= {θ∗}

and the gradient is given by

DQ(θ) = E
[
F 2(X)

p(X)

p2(X − θ)
Dp(X − θ)

]
. (17)
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Moreover, if F satisfies

∀ M > 0, E
[
F 2(X)|X|2αeM |X|α

]
< +∞ (18)

and,

∀ M > 0, sup
|θ|≤M

E
[
F 2p(X + θ)eM |X|

α 1

|X|p(1−α)

]
< +∞, for some p > 1, (19)

then, Q is twice differentiable and its hessian is given by

D2Q(θ) = E
[
F 2(X)

p(X)

p(X − θ)

(
2
Dp(X − θ)Dp(X − θ)T

p2(X − θ)
− D2p(X − θ)

p(X − θ)

)]
. (20)

Proof. For every x ∈ Rd, θ 7→ log p(x− θ) is strictly concave so that − log p(x− .) = log( 1
p(x−.)) is

strictly convex, hence the function θ 7→ e
log( 1

p(x−θ) )
= 1

p(x−θ) is strictly convex. Combining Fatou’s

lemma and Assumption 1, one easily obtains that lim|θ|→+∞Q(θ) = +∞.

In order to get the formal differentiation representation (17) we have to check the domination
property for θ ∈ B(0, R), for every R > 0. The log-concavity of p implies that for every x ∈ Rd
and θ ∈ B(0, R),

log p(x) ≤ log p(x− θ) +
〈Dp(x− θ), θ〉
p(x− θ)

.

Hence using Assumption 2 (i) yields

0 ≤ p(x)

p(x− θ)
≤ e

|Dp|
p

(x−θ)|θ| ≤ CReCR|x|
α

(21)

so that

F 2(X)
p(X)

p2(X − θ)
Dp(X − θ) ≤ CRF 2(X)(|X|α + 1)eCR|X|

α ∈ L1(P).

To justify the formal differentiation of DQ to get (20) we proceed as follows. Let x ∈ Rd. Using
Assumption 2 yields for every θ ∈ B(0, R)

p(x)

p(x− θ)

(∣∣Dp(x− θ)Dp(x− θ)T ∣∣
p2(x− θ)

)
≤ CReCR|x|

α (|x|2α + 1
)

and,

p(x)

p(x− θ)

(
1

p(x− θ)
∣∣D2p

∣∣ (x− θ)) ≤ CR(eCR|x|α |x|2α +
eCR|x−θ|

α

|x− θ|1−α

)
.

Consequently, ∀ θ ∈ B(0, R), we have

F 2(x)
p(x)

p(x− θ)

(
2
Dp(x− θ)Dp(x− θ)T

p2(x− θ)
− D2p(x− θ)

p(x− θ)

)
≤ CR(f(x) + gθ(x))

where f(x) = F 2(x)eCR|x|
α (|x|2α + 1

)
and gθ(x) = F 2(x) 1

|x−θ|1−α e
CR|x−θ|α . Using the assumption

(18) implies that f(X) ∈ L1(P). Moreover, using another change of variable and (21) yields

E
[
gpθ(X)

]
= E

[
F 2p(X + θ)eCp|X|

α 1

|X|p(1−α)

p(X + θ)

p(X)

]
≤ E

[
F 2p(X + θ)eC|X|

α 1

|X|p(1−α)

]
so that (19) implies for every R > 0

sup
θ∈B(0,R)

E
[
gpθ(X)

]
< +∞.

Consequently, the family (gθ(X))θ∈B(0,R) is P-uniformly integrable. This provides the expected
representation (20).
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Examples of distributions

� The Normal distribution
p(x) = (2π)−

d
2 e−|x|

2/2, x ∈ Rd.

Assumption 1 is clearly satisfied. Moreover, we have Dp(x)
p(x) = −x and D2p(x)

p(x) = xxT − Id,
where Id is the identity matrix of size d, so that Assumption 2 is satisfied with α = 1. A
carefull reading of the proof of Proposition 2.1 shows that assumption (19) is useless and one
only needs (18). Moreover, we have

DQ(θ) = E
[
F 2(X)e

|θ|2
2
−〈θ,X〉(θ −X)

]
,

D2Q(θ) = E
[
F 2(X)e

|θ|2
2
−〈θ,X〉

(
Id + (θ −X) (θ −X)T

)]
� The logistic distribution

p(x) =
ex

(ex + 1)2 , x ∈ R.

Assumption 1 is satisfied. Assumption 2 holds with α = 1.

� The hyper-exponential distributions

p(x) = Cd,a,σe
− |x|

a

σa P (x), x ∈ R, a ∈ [1, 2]

where P is a positive polynomial function.

The main idea is that we know that Q, DQ and D2Q can be approximated by

Q̂N (θ) := E

[
F 2(X̂)

p(X̂)

p(X̂ − θ)

]
(22)

DQ̂N (θ) := E

[
F 2(X̂)

p(X̂)

p2(X̂ − θ)
Dp(X̂ − θ)

]
, (23)

D2Q̂N (θ) := E

[
F 2(X̂)

p(X̂)

p(X̂ − θ)

(
2
Dp(X̂ − θ)Dp(X̂ − θ)T

p2(X̂ − θ)
− D2p(X̂ − θ)

p(X̂ − θ)

)]
, (24)

using an N -quantizer x with the associated weights sequence (P (X ∈ Ci(x)))1≤i≤N of the quan-

tization X̂. The computations of (22), (23) and (24) are straightforward. For N large enough,
F (xi) 6= 0 for some i ∈ {1, · · · , N}, so that Q̂N is also strictly convex and goes to infinity as
|θ| goes to infinity. Moreover, it is clear that Q̂N is differentiable. Hence, there exists a unique

θ̂N ∈ Rd such that Arg min Q̂N =
{
θ ∈ Rd | DQ̂N (θ) = 0

}
=
{
θ̂N
}

. Moreover, for N large enough,

the Hessian matrix D2Q̂N (θ) is symmetric positive definite for every θ ∈ Rd.
The following proposition describes the asymptotic behavior of θ̂N as N → +∞. It shows, as

expected, that θ̂N → θ∗ as N → +∞. First we need the following assumption:

Assumption 3. The function F is positive, convex on Rd and satisfies

(i) F is Lipschitz on Rd,

11



(ii) ∃ a > 1, such that E
[
F 4a(X)

]
< +∞ and for all M > 0, E

[
|X|4

a
a−1 + eM |X|

]
< +∞.

Proposition 2.2 (Convergence of (θ̂N )N≥1). Consider an L2-optimal stationary quantizer x of

size N with its associated quantization X̂. Assume that the assumptions of Proposition 2.1 and
that Assumption 3 are satisfied. Then, we have

θ̂N → θ∗ and Q̂N (θ̂N )→ Q(θ∗) as N → +∞,

where θ̂N is the unique global minimum of Q̂N defined by (22).

Proof . The first step of the proof consists in showing that the function Q̂N converges locally
uniformly to the continuous function Q. Let x ∈ Rd and x′ ∈ Rd. We have∣∣∣∣F 2(x)

p(x)

p(x− θ)
− F 2(x′)

p(x′)

p(x′ − θ)

∣∣∣∣ =

∣∣∣∣(F 2(x)− F 2(x′)
) p(x)

p(x− θ)
+ F 2(x′)

(
p(x)

p(x− θ)
− p(x′)

p(x′ − θ)

)∣∣∣∣
≤ [F ]Lip

∣∣x− x′∣∣ (|F (x)|+ |F (x′)|
) p(x)

p(x− θ)

+ F 2(x′)

∣∣∣∣ p(x)

p(x− θ)
− p(x′)

p(x′ − θ)

∣∣∣∣ .
Using the log-concavity of p, Assumption 2 and the inequality |eu − ev| ≤ |u− v| (eu + ev) yields,
for every θ ∈ B(0, R)∣∣∣∣ p(x)

p(x− θ)
− p(x′ − θ)
p(x′ − θ)

∣∣∣∣ ≤ ∣∣∣∣log

(
p(x)

p(x′)

)
− log

(
p(x− θ)
p(x′ − θ)

)∣∣∣∣ ( p(x)

p(x′)
+
p(x− θ)
p(x′ − θ)

)
≤
(∣∣∣∣log

(
p(x)

p(x′)

)∣∣∣∣+

∣∣∣∣log

(
p(x− θ)
p(x′ − θ)

)∣∣∣∣)( p(x)

p(x′)
+
p(x− θ)
p(x′ − θ)

)
≤ CR

∣∣x− x′∣∣ (1 + |x|α + |x′|α
) (
eC|x| + eC|x

′|
)

≤ CR
∣∣x− x′∣∣ (1 + |x|+ |x′|

) (
eC|x| + eC|x

′|
)
.

Consequently, we have∣∣∣∣F 2(x)
p(x)

p(x− θ)
− F 2(x′)

p(x′)

p(x′ − θ)

∣∣∣∣ ≤ C|x− x′|((|F (x)|+ |F (x′)|
)
eC|x|

α

+F 2(x′)
(
1 + |x|+ |x′|

) (
eC|x| + eC|x

′|
))

,

hence, Schwarz’s and Hölder’s inequalities implies for every θ ∈ B(0, R)∣∣∣Q(θ)− Q̂N (θ)
∣∣∣ ≤ E

[∣∣∣∣∣F 2(X)
p(X)

p(X − θ)
− F 2(X̂)

p(X̂)

p(X̂ − θ)

∣∣∣∣∣
]

≤ C
∥∥∥X − X̂∥∥∥

2

(∥∥∥(F (X) + F (X̂)
)
eC|X|

α
∥∥∥

2

+
∥∥∥F 2(X̂)

(
1 + |X|+ |X̂|

)(
eC|X| + eC|X̂|

)∥∥∥
2

)
≤ C

∥∥∥X − X̂∥∥∥
2

((
‖F (X)‖2a +

∥∥∥F (X̂)
∥∥∥

2a

)∥∥∥eC|X|α∥∥∥
2 a
a−1

+
∥∥∥F 2(X̂)

∥∥∥
2a

(
1 + ‖X‖4 a

a−1
+
∥∥∥X̂∥∥∥

4 a
a−1

)(∥∥∥eC|X|∥∥∥
4 a
a−1

+
∥∥∥eC|X̂|∥∥∥

4 a
a−1

))
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Now F 2a is convex since F is and u 7→ u2a is increasing and convex on R+. Consequently, by
Jensen’s inequality

E
[
F 2a(X̂)

]
= E

[
F 2a

(
E
[
X |X̂

])]
≤ E

[
E
[
F 2a(X) |X̂

]]
= E

[
F 2a(X)

]
.

Using similar arguments, we have:
∥∥∥F 2(X̂)

∥∥∥
2a
≤
∥∥F 2(X)

∥∥
2a

,
∥∥∥X̂∥∥∥

4 a
a−1

≤ ‖X‖4 a
a−1

,
∥∥∥eC|X̂|∥∥∥

4 a
a−1

≤∥∥eC|X|∥∥
4 a
a−1

. Finally, we obtain for some positive constant C independent of θ and N∣∣∣Q(θ)− Q̂N (θ)
∣∣∣ ≤ C ∥∥∥X − X̂∥∥∥

2
→ 0, as N → +∞.

So that Q̂N converges locally uniformly to Q.

Now let ε > 0. Q being continuous at θ∗ and strictly convex

η := inf
θ:|θ−θ∗|≥ε

Q(θ)−Q(θ∗) > 0.

The local uniform convergence of Q̂N to Q ensures that

∃ Nη, ∀N ≥ Nη, ∀θ ∈ Rd such that |θ − θ∗| ≤ ε, then
∣∣∣Q̂N (θ)−Q(θ)

∣∣∣ ≤ η/3.
Assume that θ satisfies |θ − θ∗| ≥ ε. The convexity of Q̂N implies that

Q̂N

(
θ∗ + ε

θ − θ∗

|θ − θ∗|

)
≤ ε

|θ − θ∗|
Q̂N (θ) +

(
1− ε

|θ − θ∗|

)
Q̂N (θ∗),

so that,

Q̂N (θ)− Q̂N (θ∗) ≥ |θ − θ
∗|

ε

(
Q̂N

(
θ∗ + ε

θ − θ∗

|θ − θ∗|

)
− Q̂N (θ∗)

)
≥ |θ − θ

∗|
ε

(
Q

(
θ∗ + ε

θ − θ∗

|θ − θ∗|

)
−Q (θ∗)− 2η/3

)
≥ η/3.

Since θ̂N is the unique global minimum of Q̂N , we have Q̂N (θ̂N ) − Q̂N (θ∗) ≤ 0. Consequently,
|θ̂N − θ∗| < ε for N ≥ Nη and (θ̂N )N≥1 converges to θ∗. Combining the local uniform convergence

of (Q̂N )N≥1 to Q and the continuity of Q at θ∗, we obtain that Q̂N (θ̂N ) → Q(θ∗), as N → +∞.
This concludes the proof.

A classical method for estimating θ̂N , i.e. for solving the system of nonlinear equationsDQ̂N (θ) =
0 is Newton-Raphson’s algorithm:

θ̂n+1 = θ̂n −D2Q̂N (θ̂n)−1DQ̂N (θ̂n), n ≥ 0, θ̂0 given. (25)

Newton-Raphson’s algorithm is attractive because it converges rapidly from any sufficiently good
initial guess under standard assumptions. Indeed, since θ̂N is the unique solution of DQ̂N (θ) = 0,
DQ̂N is continuously differentiable on Rd and D2Q̂N (θ) is a symmetric positive-definite matrix
for all θ ∈ Rd, then the sequence (θ̂n)n≥0 defined by (25) is known to converge toward θ̂N if θ̂0 is

sufficiently close to θ̂N .
At this stage, it is natural to characterize the rate of convergence of (θ̂N )N≥1 to θ∗. To this end,

first we need to obtain some error bounds for
∣∣∣DQ(θ)−DQ̂N (θ)

∣∣∣, θ ∈ B(0, R), for some R > 0.
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Assumption 4. The function Dp
p is α-Hölder.

Proposition 2.3. Assume that Assumptions 1, 2, 3 and 4 hold. Let x be an L2-optimal stationary
quantizer of size N and X̂ the associated Voronoi quantization. Then, for every R > 0, for every
θ ∈ B(0, R) ∣∣∣DQ(θ)−DQ̂N (θ)

∣∣∣ = O
(∥∥∥X − X̂∥∥∥α

2

)
, N → +∞.

Hence, DQ̂N converges locally uniformly to DQ.

Proof. Let x ∈ Rd, x′ ∈ Rd and θ ∈ B(0, R). We have

F 2(x)
p(x)Dp(x− θ)
p2(x− θ)

− F 2(x′)
p(x′)Dp(x′ − θ)
p2(x′ − θ)

=
(
F 2(x)− F 2(x′)

) p(x)

p2(x− θ)
Dp(x− θ)

+ F 2(x′)

(
p(x)

p(x− θ)
− p(x′)

p(x′ − θ)

)
Dp(x− θ)
p(x− θ)

+ F 2(x′)
p(x′)

p(x′ − θ)

(
Dp(x− θ)
p(x− θ)

− Dp(x′ − θ)
p(x′ − θ)

)
.

First we take care of the first term of the above sum. Using Assumption 2 (i), Assumption 3 (i)
and (21), yield∣∣∣∣(F 2(x)− F 2(x′)

) p(x)

p2(x− θ)
Dp(x− θ)

∣∣∣∣ ≤ CR ∣∣x− x′∣∣ (F (x) + F (x′)
)

(1 + |x|α)eC|x|.

Now, we focus on the second term. Using similar arguments than the ones used in the proof of
Proposition 2.2 and Assumption 2 (i) yield

F 2(x′)

∣∣∣∣ p(x)

p(x− θ)
− p(x′)

p(x′ − θ)

∣∣∣∣ |Dp(x− θ)|p(x− θ)
≤ CR|x− x′|F 2(x′)

(
1 + |x|+ |x′|

) (
eC|x| + eC|x

′|
)
.

Finally, using (21) and Assumption 4 for the last term implies

F 2(x′)
p(x′)

p(x′ − θ)

∣∣∣∣Dp(x− θ)p(x− θ)
− Dp(x′ − θ)

p(x′ − θ)

∣∣∣∣ ≤ CR|x− x′|αF 2(x′)eC|x
′|

Using similar arguments than the ones used in the proof of Proposition 2.2 yields∣∣∣DQ(θ)−DQ̂N (θ)
∣∣∣ ≤ E

[∣∣∣∣∣F 2(X)
p(X)Dp(X − θ)

p2(X − θ)
− F 2(X̂)

p(X̂)Dp(X̂ − θ)
p2(X̂ − θ)

∣∣∣∣∣
]

≤ CR
(∥∥∥X − X̂∥∥∥

2
+
∥∥∥X − X̂∥∥∥α

2

)
≤ CR

∥∥∥X − X̂∥∥∥α
2

as N → +∞.

Now we are in position to characterize the convergence rate of (θ̂N )N≥1 toward θ∗. The following

result shows that as expected the error |θ̂N − θ∗| is controlled by the quantization error.

Theorem 2.4. Assume that Assumptions 1, 2, 3 and 4 hold. For every N ≥ 1, there exists ηN > 0
such that, if |θ̂0− θ̂N | ≤ ηN , then the sequence (θ̂n)n≥0 defined by (25) converges to θ̂N . Moreover,

the convergence rate of (θ̂N )N≥1 to θ∗ is based on L2-quantization error in the sense that

|θ̂N − θ∗| = O
(∥∥∥X − X̂∥∥∥α

2

)
, as N → +∞.
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Proof. We define the norm |θ|∗ :=
∣∣D2Q(θ∗)θ

∣∣, for θ ∈ Rd. Since D2Q(θ∗) is non-singular,

1

κ
|θ| ≤ |θ|∗ ≤ κ|θ|, for θ ∈ Rd,

where κ := max
(
|D2Q(θ∗)|; |D2Q(θ∗)−1|

)
. Choose δ sufficiently small that 2κδ (1 + κδ) ≤ 1

2 . We
can choose ε > 0 sufficiently small such that if |θ − θ∗| ≤ ε then∣∣D2Q(θ)−D2Q(θ∗)

∣∣ ≤ δ, (26)∣∣D2Q−1(θ)−D2Q−1(θ∗)
∣∣ ≤ δ, (27)∣∣DQ(θ)−DQ(θ∗)−D2Q(θ∗)(θ − θ∗)

∣∣ ≤ δ |θ − θ∗| . (28)

The continuity of D2Q at θ∗, the non-singularity of D2Q(θ∗) and the continuous differentiability
of DQ at θ∗ ensures the existence of such an ε. The existence of an ηN such that the sequence
(θ̂n)n≥0 converges to θ̂N if |θ̂0 − θ̂N | ≤ ηN follows using the same arguments applied to Q̂N .

The convergence of (θ̂N )N≥1 to θ∗ ensures the existence of N0 ∈ N∗ such that if N ≥ N0,

|θ̂N − θ∗| ≤ ε. Hence (26), (27) and (28) hold for θ = θ̂N , N ≥ N0.
Now, the recursive algorithm (25) can be written

θ̂n+1 = θ̂n −D2Q(θ̂n)−1DQ(θ̂n) + rn + sn. (29)

with ∀n ∈ N, rn = D2Q(θ̂n)−1
(
DQ(θ̂n)−DQ̂(θ̂n)

)
and sn =

(
D2Q(θ̂n)−1 −D2Q̂(θ̂n)−1

)
DQ̂(θ̂n).

Using the following equality

D2Q(θ∗)
(
θ̂n − θ∗ −D2Q(θ̂n)−1DQ(θ̂n)

)
=
(
Id +D2Q(θ∗)

(
D2Q(θ̂n)−1 −D2Q(θ∗)−1

))
((
D2Q(θ̂n)−D2Q(θ∗)

)
(θ̂n − θ∗) +

(
DQ(θ̂n)−DQ(θ∗)−D2Q(θ∗)(θ̂n − θ∗)

))
and taking norms in (29) yields∣∣∣θ̂n+1 − θ∗

∣∣∣
∗
≤
(

1 +
∣∣D2Q(θ∗)

∣∣ ∣∣∣D2Q(θ̂n)−1 −D2Q(θ∗)−1
∣∣∣) (∣∣∣D2Q(θ̂n)−D2Q(θ∗)

∣∣∣ |θ̂n − θ∗|
+
∣∣∣DQ(θ̂n)−DQ(θ∗)−D2Q(θ∗)(θ̂n − θ∗)

∣∣∣)+
∣∣D2Q(θ∗)rn

∣∣+
∣∣D2Q(θ∗)sn

∣∣
(30)

Let N ≥ N0 and ηN > 0 such that |θ̂0 − θ̂N | ≤ ηN so that (θ̂n)n≥1 converges toward θ̂N . The

continuity of DQ, DQ̂, D2Q and D2Q̂ at θ̂N and the non singularity of D2Q(θ̂N ) and D2Q̂(θ̂N )
yield∣∣D2Q(θ∗)rn

∣∣→ ∣∣∣D2Q(θ∗)D2Q(θ̂N )−1(DQ(θ̂N )−DQ̂(θ̂N ))
∣∣∣ , and

∣∣D2Q(θ∗)sn
∣∣→ 0 as n→ +∞.

Letting n goes to infinity in (30) and using (26), (27), (28) for θ = θ̂N , N ≥ N0, implies that∣∣∣θ̂N − θ∗∣∣∣
∗
≤ 2κδ (1 + κδ)

∣∣∣θ̂N − θ∗∣∣∣
∗

+
∣∣∣D2Q(θ∗)D2Q(θ̂N )−1

∣∣∣ ∣∣∣DQ(θ̂N )−DQ̂(θ̂N )
∣∣∣ .

Moreover, for N ≥ N0, using (27) we have∣∣∣D2Q(θ∗)D2Q(θ̂N )−1
∣∣∣ =

∣∣∣D2Q(θ∗)
(
D2Q(θ̂N )−1 −D2Q(θ∗)−1

)
+ Id

∣∣∣ ≤ (1 + κδ) .

Finally, Proposition 2.3 and the choice of δ yield∣∣∣θ̂N − θ∗∣∣∣
∗
≤ C

∥∥∥X − X̂∥∥∥α
2
, N ≥ N0,

so that
∣∣∣θ̂N − θ∗∣∣∣ = O

(∥∥∥X − X̂∥∥∥α
2

)
as N → +∞.
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Remark 2.1. • When X is a d-dimensional gaussian vector, Assumptions 2 and 4 are satisfied
with α = 1 so that if x is an L2-optimal quantizer with its associated Voronoi quantization X̂,
Theorem 1.1. implies the following error bound in Theorem 2.4∣∣∣θ̂N − θ∗∣∣∣ ≤ CN− 1

d , as N → +∞.

In practice, only a rough estimate of the optimal change of measure parameter θ∗ is needed.
According to our numerical results, optimal quantization grids of size N ∼ 200, 500 (depending on
the dimension d) are enough. Concerning θ̂N , it can be computed with a high precision by a few
steps (usually less than 10) of the Newton-Raphson’s optimization procedure (25).
• For the sake of simplicity we used the classical Lipschitz continuous assumption on F but

other error bounds can be derived by replacing Assumption 3 (i) by other smoothness assumption.

2.2 Quantized importance sampling for Brownian diffusions

In this section, we extend the Newton-Raphson’s algorithm to the infinite dimensional setting, i.e.
the case of path-dependent diffusion. We will rely on the Girsanov transform to play the role of
mean translator. To be more precise, we consider a d-dimensional Itô process X solution to the
stochastic differential equation (S.D.E.)

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x ∈ Rd, (Eb,σ,W )

W = (Wt)t∈[0,T ] being a q-dimensional standard Brownian motion and where Xt := (Xt∧s)s∈[0,T ]

is the stopped process at time t, b : [0, T ]× C([0, T ],Rd)→ Rd, σ : [0, T ]× C([0, T ],Rd)→M(d, q)
are measurable with respect to the canonical predictable σ-field on [0, T ]× C([0, T ],Rd).

Under the following assumption{
(i) b(., 0) and σ(., 0) are continuous,
(ii) ∀t ∈ [0, T ],∀x, y ∈ C([0, T ],Rd), |b(t, y)− b(t, x)|+ ||σ(t, y)− σ(t, x)|| ≤ Cb,σ||x− y||∞.

(Hb,σ)
strong existence and uniqueness of solutions for (Eb,σ,W ) can be proved (for more details, see [21]).
We aim at devising a robust and automatic Newton-Raphson’s algorithm based on functional
quantization inspired from Section 2.1 for the computation of

E [F (X)]

where F is a Borel functional defined on C
(
[0, T ],Rd

)
such that

F (X) ∈ L2 (P) and P
(
F 2(X) > 0

)
> 0. (31)

In this functional framework, the invariance by translation of the Lebesgue measure (2) is replaced
by Girsanov Theorem. We consider a translation process given by θ ∈ L2

T,q := L2([0, T ],Rq) which
is slightly less general than the ones used in [15]. Indeed, they considered translation processes of
the form Θ(t,Xt) defined for every ξ ∈ C

(
[0, T ],Rd

)
and θ ∈ L2([0, T ],Rp) by

Θ(t, ξ) := ϕ(t, ξt)θt, where ϕ : [0, T ]× C
(

[0, T ],Rd
)
→M(q, p),

is a prespecified bounded Borel function. In what follows, we can easily adapt to this kind of
translation processes but for the sake of simplicity, we prefered to focus on this simple case.

It follows from Girsanov Theorem that for every θ ∈ L2
T,q

E [F (X)] = E

[
F (X(θ))e

−
∫ T
0 〈θs,dWs〉− 1

2
‖θ‖2

L2
T,q

]
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where X(θ) denotes the solution to (Eb+σθ,σ,W ). Among all these estimators we want to select the
one with the lowest quadratic norm so that we want to solve the following minimization problem

min
θ∈L2

T,q

Q(θ) where Q(θ) := E

[
F 2(X(θ))e

−2
∫ T
0 〈θs,dWs〉−‖θ‖2L2

T,q

]
.

Another Girsanov Theorem yields

Q(θ) := E

[
F 2(X)e

−
∫ T
0 〈θs,dWs〉+ 1

2
‖θ‖2

L2
T,q

]
. (32)

In view of numerical implementation of a Newton-Raphson’s algorithm to estimate a minimum
of Q, we are lead to consider a (non trivial) finite dimensional subspace E of L2

T,p spanned by
an orthonormal basis (e1, · · · , em). Like for the finite dimensional framework, our procedure will
be based on the representation (as an expectation) of the first differential DQ and the second
differential D2Q of Q on E combined with functional quantization of (Eb,σ,W ).

Proposition 2.5. Assume that E
[
F (X)2+δ

]
< +∞ for some δ > 0 as well as assumptions (Hb,σ)

and (31) hold. Then the function Q defined by (32) is finite, strictly convex on L2
T,q and

lim
‖θ‖2

L2
T,q
→+∞

Q(θ) = lim
‖θ‖2

L2
T,q
→+∞, θ∈E

Q(θ) = +∞.

Moreover, the function Q is twice differentiable at every θ ∈ L2
T,q and for every ψ ∈ L2

T,q, φ ∈ L2
T,q

〈DQ(θ), ψ〉L2
T,q

= E
[
F 2(X)eΦ(θ) 〈DΦ(θ), ψ〉L2

T,q

]
(33)(

D2Q(θ)ψ, φ
)

= E
[
F 2(X)eΦ(θ)

(
〈DΦ(θ), ψ〉L2

T,q
〈DΦ(θ), φ〉L2

T,q
+
(
D2Φ(θ)ψ, φ

))]
(34)

where Φ : θ 7→ −
∫ T

0 〈θs, dWs〉+ 1
2 ‖θ‖

2
L2
T,q

is twice differentiable with

〈DΦ(θ), ψ〉L2
T,q

= −
∫ T

0
〈ψs, dWs〉+

∫ T

0
〈θs, ψs〉 ds and

(
D2Φ(θ)ψ, φ

)
=

∫ T

0
〈φs, ψs〉 ds.

Proof. Owing to Hölder’s inequality of conjugate exponents (s, t) := (1 + δ
2 , 1 + 2

δ ), we have for
every θ ∈ L2

T,q

Q(θ) ≤ E
[
F (X)2+δ

] 2
2+δ E

[
e
t
2
‖θ‖2

L2
T,q
−t

∫ T
0 〈θs,dWs〉

] 1
t

= E
[
F (X)2+δ

] 2
2+δ

e
(1+ 1

δ
)‖θ‖2

L2
T,q < +∞

since the Doléans exponential

(
e

∫ t
0 〈θs,dWs〉− 1

2
‖θ‖2

L2
T,q

)
t∈[0,T ]

is a true martingale for any θ ∈ L2
T,q.

The function Q is strictly convex since the function Φ is and exp is strictly increasing and strictly
convex.

Now, using the trivial equality

e
−

∫ T
0 〈θs,dWs〉+ 1

2
‖θ‖2

L2
T,q =

(
e
− 1

2

∫ T
0 〈θs,dWs〉+ 1

8
‖θ‖2

L2
T,q

)2

e
1
4
‖θ‖2

L2
T,q
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and the reverse Hölder’s inequality with conjugate exponents
(

1
3 ,−

1
2

)
yields

Q(θ) ≥ E
[
F

2
3 (X)e

1
12
‖θ‖2

L2
T,q

]3

E

[
e

1
2

∫ T
0 〈θs,dWs〉− 1

8
‖θ‖2

L2
T,q

]−2

≥ E
[
F

2
3 (X)

]3
e

1
4
‖θ‖2

L2
T,q

by the martingale property of the Doléans exponential. Let ε > 0 such that P
(
F 2(X) ≥ ε

)
> 0.

We have Q(θ) ≥ ε
1
3E
[
1F 2(X)≥ε

]
e

1
4
‖θ‖2

L2
T,q = ε

1
3P
(
F 2(X) ≥ ε

)3
e

1
4
‖θ‖2

L2
T,q , so that Q goes to infinity

as ‖θ‖L2
T,q

goes to infinity.

The random functional Φ from L2
T,q into Lr(P) (for all r ≥ 1) is twice differentiable since

∀ θ, ψ ∈ L2
T,q,

∣∣∣Φ(θ + ψ)− Φ(θ)− 〈DΦ(θ), ψ〉L2
T,q

∣∣∣ ≤ 1

2
‖ψ‖2L2

T,q

and,
∀ θ, ψ, φ ∈ L2

T,q, 〈DΦ(θ + φ)−DΦ(θ), ψ〉L2
T,q

= 〈φ, ψ〉L2
T,q

=
(
D2Φ(θ)ψ, φ

)
where ψ 7→ 〈DΦ(θ), ψ〉L2

T,q
is a bounded linear operator from L2

T,q into Lr(P). Using the Cauchy-

Schwarz and the Burkholder-Davis-Gundy inequalities, its operator norm satisfies |||Dφ(θ)|||L2
T,q ,L

r(P) ≤

Cr(1+‖θ‖
1
2

L2
T,q

). Consequently, by the composition rule, we derive that Ψ : θ 7→ eΦ(θ) is twice diffen-

tiable from L2
T,q into Lr(P) for any r ≥ 1. Moreover, for every ψ, φ ∈ L2

T,q, we have 〈DΨ(θ), ψ〉L2
T,q

=

eΦ(θ) 〈DΦ(θ), ψ〉L2
T,q

, and
(
D2Ψ(θ)ψ, φ

)
= eΦ(θ)

(
〈DΦ(θ), ψ〉L2

T,q
〈DΦ(θ), φ〉L2

T,q
+
(
D2Φ(θ)ψ, φ

))
.

We conclude that θ 7→ Q(θ) = E
[
F 2(X)eΦ(θ)

]
is twice differentiable with first and second

differentials characterized by (33) and (34).

The target of the stochastic algorithm investigated in [15] is the minimum of the restriction of
Q on E, θ∗E which satisfies DQ|E(θ∗E) ≡ 0. Like for the static framework, in order to approximate

DQ|E(θ) and D2Q|E(θ) (which can be seen respectively as the m-tuple
(
〈DQ(θ), ei〉L2

T,q

)
1≤i≤m

and

as an m ×m symetric positive definite matrix D2Q|E(θ) =
(
D2Q(θ)ei, ej

)
1≤i≤m,1≤j≤m) for every

θ ∈ E, we consider an (non-Voronoi) N -functional quantization X̃ of (Eb,σ,W ) given by (16). Hence,

for every θ ∈ E, we approximate QE(θ), DQE(θ) and D2QE by respectively Q̃N (θ), DQ̃N (θ) and
D2Q̃N (θ) defined by

Q̃N (θ) = E

[
F 2(X̃)e

−
∫ T
0 〈θs,dŴs〉+ 1

2
‖θ‖2

L2
T,q

]
,

〈
DQ̃N (θ), ei

〉
L2
T,q

= E
[
F 2(X̃)eΦ̂(θ)

〈
DΦ̂(θ), ei

〉
L2
T,q

]
,(

D2Q̃N (θ)ei, ej

)
= E

[
F 2(X̃)eΦ̂(θ)

(〈
DΦ̂(θ), ei

〉
L2
T,q

〈
DΦ̂(θ), ej

〉
L2
T,q

+
(
D2Φ̂(θ)ei, ej

))]

where Φ̂(θ) = −
∫ T

0

〈
θs,dŴs

〉
+ 1

2 ‖θ‖
2
L2
T,q

,
〈
DΦ̂(θ), ei

〉
L2
T,q

= −
∫ T

0

〈
ei(s),dŴs

〉
+
∫ T

0 〈θs, ei(s)〉 ds

and
(
D2Φ̂(θ)ei, ej

)
= 〈ei, ej〉L2

T,q
, i = 1, · · · ,m, j = 1, · · · ,m.

Hence, we compute the minimum θ̃N of Q̃N by devising the following Newton-Raphson algo-
rithm

θ̃n+1 = θ̃n −H(θ̃n)−1J(θ̃n), n ≥ 0, θ̃0 ∈ E given. (35)
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where for every θ ∈ E, H(θ)i,j =
(
D2Q̃N (θ)ei, ej

)
and J(θ)i =

〈
DQ̃N (θ), ei

〉
L2
T,q

, i = 1, · · · ,m,

j = 1, · · · ,m.

Remark 2.2. Like for the static framework (see Proposition 2.2 and Theorem 2.4), the convergence

of
(
θ̃N
)
N≥1

toward θ∗E and its convergence rate can be established under assumptions similar to

the finite dimensional framework.

3 Numerical illustrations

In the following of this section, we illustrate the performance of these generic variance reduction
algorithms both in the finite dimensional framework and in the diffusion framework. The numerical
simulations are done in Scilab 5.3.

3.1 Finite dimensional setting

Basket options: We consider basket options with payoffs given by
(∑d

i wiS
i
T −K

)
+

where

(wi, · · · , wd) is the vector of weights, K denotes the strike, T is the maturity and SiT is the price
at maturity of the ith asset. We assume that each of the d assets under the risk-neutral measure
has a price given by a Black-Scholes model driven by the vector of independent Brownian motions
W =

(
W 1
t , · · · ,W d

t , t ≥ 0
)
,

Sit = Si0e
(r− (σi)2

2
)t+σiW i

t
d
= Si0e

(r− (σi)2

2
)t+σi

√
tZi S0 =

(
S1

0 , · · · , Sd0
)
,

where Z = (Z1, · · · , Zd) is a Gaussian vector of size d. We price this basket option with different
values of the number of assets d and the strike K. The quantization grids have the same size
N = 200 and the number of Monte-Carlo simulations n is 100,000 in every case. Note that for each
value of d and each value of the strike K, the prices are computed using the same pseudo-random
number generator initialized with the same seed.

The numerical results are reported in Table 1. In this table, the first two columns correspond to
the different values of the dimension d and the strike K. The third and fourth columns correspond
to the crude Monte-Carlo estimator and its associated variance. The fifth and sixth columns refer
to the Monte-Carlo estimator and its variance using the optimal change of measure θ̂N computed
with our Newton-Raphson’s algorithm.

We can see in this example that our Quantization based Importance Sampling algorithm does
reduce the variance by a factor varying from 6 up to 15. Note that it does not require any Monte-
Carlo simulations to compute the optimal change of measure and unlike most adaptive importance
sampling algorithm it does not need specific parameter tuning. One does not have to set up
complicated adjustments when using it, it is fully generic and automatic. Hence, it is a very
interesting variance reduction procedure to be used in an industrial way.

Spark spread option: We consider now an exchange option between gas and electricity (called
spark spread) with payoff given by

(
SeT − hRS

g
T − C

)
+

where SeT and SgT denote electricity and gas
spot prices at maturity T , hR is a heat rate and C is the generation cost. This kind of payoff
appears in the pricing of power plant. We assume that the dynamic of electricity and gas spot
prices follows the SDE:

dSjt = θj

(
αj − logSjt

)
Sjt dt+ σjdW

j
t , j = e, g,
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Table 1: Basket option in dimension d = 2, · · · , 6 with r = 0.05, T = 1, Si0 = 50, σi = 0.3, wi = 1/d, i = 1, · · · , d,
N = 200 n = 100, 000

d K Price MC Variance MC Price QIS Variance QIS

2 50 5.475 62.26 5.490 7.86
55 3.294 40.54 3.309 4.33
60 1.873 24.03 1.885 2.03

3 50 4.751 42.01 4.760 5.88
55 2.523 24.26 2.545 2.82
60 1.237 12.38 1.221 1.01

4 50 4.333 32.03 4.343 4.64
55 2.086 16.93 2.089 2.01
60 0.882 7.29 0.868 0.58

5 50 4.061 26.05 4.057 3.99
55 1.781 12.77 1.777 1.51
60 0.642 4.63 0.647 0.35

6 50 3.843 22.10 3.830 3.50
55 1.566 10.02 1.553 1.19
60 0.506 3.25 0.494 0.22

where W e and W g are two independent Brownian motions. The stochastic processes Xj = log(Sj),
j = g, e are Ornstein-Uhlenbeck processes:

dXj
t = θj(µj −Xj

t )dt+ σjdW
j
t , where µj = αj −

σ2
j

2θj
.

Writing spot prices as exponential of a sum of Ornstein-Uhlenbeck processes is a very common way
to reproduce the mean reversion behavior of commodity spot prices. This model was first proposed
by Schwartz in [22]. In this example, the dimension d is equal to 2. The quantization grids have
the same size N = 200 and the number of Monte-Carlo simulations n is 100,000 in every case.

The numerical results are summarized in Table 2 where we price the spark spread option for
different values of C. We see that our Quantization based IS algorithm perfoms well again. In any
case, the variance is divided by at least 13. Once again the Newton-Raphson algorithm proposed
converges quickly, i.e. five iterations are enough to get a very accurate estimate of θ̂N .

Table 2: Spark spread option with T = 0.5, Se0 = 40 $/MWh, Sg0 = 4 $/MMBTU (BTU: British Thermal Unit),
σe = 0.7, σg = 0.35, λe = λg = 0.3, αe = log(Se0), αg = log(Sg0 ), hR = 10 BTU/kWh, C = 0, 3, 5, 8, 10, 12 $/MWh,
N = 200, n = 100, 000.

C Price MC Variance MC Price QIS Variance QIS

0 7.933 221.01 7.957 16.48
3 6.681 189.24 6.757 13.32
5 6.024 176.93 6.049 11.54
8 5.081 153.44 5.083 9.16
10 4.575 141.09 4.531 7.81
12 4.057 125.49 4.032 6.61

3.2 Infinite dimensional setting

We consider three different basis of L2([0, 1],R)

• a polynomial basis composed of the shifted Legendre polynomials (P̃n)n≥0 defined by

∀n ≥ 0, ∀t ∈ [0, 1], P̃n(t) = Pn(2t− 1) where Pn(t) =
1

2nn!

dn

dtn
((
t2 − 1

))
. (ShLeg)
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• the Karhunen-Loeve basis defined by

∀n ≥ 0, ∀t ∈ [0, 1], en(t) =
√

2 sin

((
n+

1

2

)
πt

)
. (KL)

• the Haar basis which is defined by

∀n ≥ 0, ∀k = 0, ..., 2n − 1, ∀t ∈ [0, 1], ψn,k(t) = 2
k
2ψ(2kt− n) (Haar)

where

ψ(t) =


1 if t ∈ [0, 1

2)
−1 if t ∈ [1

2 , 1)
0 otherwise.

Asian option: The considered payoff is an Asian option on a discrete time schedule of obser-

vation dates t0 < · · · < tp−1 = T with payoff
(

1
p

∑p−1
k=0 Stk −K

)
+

.

Black-Scholes Model: First we consider that S follows the classical Black-Scholes model with interest
rate r = 4% and volatility σ = 50%. The strike of the option is set at K = 115, the maturity at
T = 1, p = 100 observation dates and the initial price S0 = 100. For the different basis mentioned
above and different values of m (2, 4 and 8), the results of our algorithm are summarized in Table
3.

Note that since for all t ∈ [0, T ], St = e(r−σ
2

2
)t+σWt , for numerics we consider the non-Voronoi

Ŝt defined by

Ŝt := e(r−σ
2

2
)t+σŴt =

N∑
i=1

e(r−σ
2

2
)t+σχi(t)1Ci(χi)(W ), N ≥ 1, (36)

instead of approximating the solution of the ODE given by (15).
We set the optimal product quantizer at level dN = 966 which corresponds to the optimal

decomposition N1 = 23, N2 = 7, N3 = 3, N4 = 2 for the problem (14) (see [16] for more details).
The number of Monte-Carlo simulations n is 100,000 in every case. Note once again that for each
basis and each value of the dimension m, the prices and the variances are computed using the same
pseudo-random number generator initialized with the same seed. In Figure 3.2 are depicted the
optimal variance reducer θN when the minimization of Q̃N is carried out on Em = span(e1, · · · , em)
for several values of m in the different basis mentioned above.

Table 3: Asian option in the Black-Scholes model with S0 = 100, K = 115, T = 1, p = 100, σ = 50%, r = 4%,
dN = 966, n = 100, 000.

Basis m Price MC Variance MC Price QIS Variance QIS

Constant 1 7.112 293.98 7.006 79.07
Legendre 2 7.179 296.52 7.062 22.46
(ShLeg) 4 7.033 290.71 7.093 22.17

8 7.180 300.72 7.096 22.25
Karhunen-Loève 2 7.102 296.91 7.043 83.81

(KL) 4 7.066 295.76 7.034 74.31
8 7.082 290.51 7.096 37.69

Haar 2 7.104 293.13 7.035 33.14
(Haar) 4 7.110 297.77 7.074 25.07

8 7.136 299.64 7.065 23.17
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Figure 1: Asian option: Optimal θN obtained by our algorithm in the case of the Black-Scholes
model for different basis and several values of m (m = 2 for the left upper curves, m = 4 for the
right upper curves and m = 8 for the lower curves).

Local-Volatility Model: Now, we consider the same payoff function in a local volatility model
(inspired by the CEV model) defined by

dXt = rXtdt+ σXt
Xβ
t√

1 +X2
t

dWt, X0 = x, (37)

with r = 0.04, σ = 5, x = 100 and β = 0.5. For numerics, the solution of the ODE given by (15)
is approximated by a sixth order Runge-Kutta scheme. The number of Monte-Carlo simulations n
is 50,000 in every case. The numerical results are summarized in Table 4.

Schwartz’s Model: Again we consider the same payoff function in the Schwartz model with r = 0.04,
σ = 50%, S0 = 100, α = log(S0), λ = 0.3. The number of Monte-Carlo simulation n is 100,000 in
every case. The numerical results are summarized in Table 5. Note that since the spot price can
be written

St = elog(S0)e−θt+µ(1−e−θt)+Yt with dYt = −Ytdt+ σdWt, Y0 = 0.

Hence, to quantize the diffusion S, we just have to obtain a (rate optimal) N -product quantizer
yN of the centered Ornstein-Uhlenbeck process Y . It is given by

yNi (t) = σ
∑
n≥1

xin c̃nϕn(t), i ∈ Πn≥1 {1, · · · , Nn} ,
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Table 4: Asian option in the Local Volatility model with x = 100, K = 115, T = 1, p = 100, σ = 5, r = 4%,
β = 0.5, dN = 966, n = 50, 000.

Basis m Price MC Variance MC Price QIS Variance QIS

Constant 1 6.635 205.69 6.681 58.63
Legendre 2 6.646 204.84 6.619 16.94
(ShLeg) 4 6.593 206.52 6.661 16.84

8 6.537 203.39 6.627 17.29
Karhunen-Loève 2 6.562 203.73 6.620 66.55

(KL) 4 6.627 205.24 6.578 53.25
8 6.700 207.31 6.637 32.61

Haar 2 6.583 204.65 6.651 26.06
(Haar) 4 6.535 203.09 6.669 18.82

8 6.679 206.39 6.656 17.48

where xn :=
(
xNn1 , · · · , xNnNn

)
is the unique optimal Nn-quantizer of the normal distribution, c̃n =

T 2

(π(n−1/2))2+(θT )2
, ϕn(t) =

√
2
T

(
π
T (n− 1/2) sin

(
π(n− 1/2) tT

)
+ θ

(
cos
(
π(n− 1/2) tT

)
− e−θt

))
. Con-

sequently we save computation time since we don’t need to devise a Runge-Kutta scheme.

Table 5: Asian option in Schwartz’s model with S0 = 100, K = 115, T = 1, p = 100, σ = 50%, r = 4%, α = log(S0),
λ = 0.3, dN = 966, n = 100, 000.

Basis m Price MC Variance MC Price QIS Variance QIS

Constant 1 5.012 173.59 4.905 40.07
Legendre 2 5.029 173.80 4.952 11.74
(ShLeg) 4 4.980 170.77 4.978 11.78

8 5.091 180.02 4.962 12.00
Karhunen-Loève 2 4.928 171.54 4.960 44.55

(KL) 4 4.974 171.92 4.956 39.48
8 4.980 171.64 4.961 21.50

Haar 2 4.999 173.55 4.944 17.47
(Haar) 4 5.027 175.04 4.949 13.28

8 4.932 169.83 4.970 12.28

Down & In Call option: We consider an Down & In Call option of strike K and barrier L.
This option is activated when the underlying process X moves down and hits the barrier L. The
payoff function at maturity T is defined by

F (X) = (XT −K)+1{min0≤t≤T Xt≤L}

A standard approach to price the option is to consider the continuous Euler scheme X̄ of step
tk = k TM obtained by extrapolation of the Brownian Motion between two instants of discretization.
For every t ∈ [tk, tk+1], we can write

X̄t = X̄tk + b(X̄tk)(t− tk) + σ(X̄tk)(Wt −Wtk), X̄0 = x0 ∈ R.

By preconditioning,

E
[
(X̄T −K)+1{min0≤t≤T X̄t≤L}

]
= E

[
(X̄T −K)+

(
1−

M−1∏
k=0

p(X̄tk , X̄tk+1
)

)]
,

where p(xk, xk+1) = P
(
mintk≤t≤tk+1

X̄t ≥ L
∣∣(X̄tk , X̄tk+1

)
= (xk, xk+1)

)
is the probability of non

exit of some brownian bridge. Using the law of the brownian bridge (see for example [9]), we can
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write

p(xk, xk+1) = 1− P
(

min
t∈[0,t1]

Wt ≤
L− xk
σ(xk)

∣∣∣∣Wt1 =
xk+1 − xk
σ(xk)

)
(38)

=

 1− e
−

2(L−xk)(L−xk+1)

(tk+1−tk)σ2(xk) if L ≤ min(xk, xk+1),

0 , otherwise.

(39)

Hence, we run our algorithm with this modified payoff function: (X̄T−K)+

(
1−

∏M−1
k=0 p(X̄tk , X̄tk+1

)
)

.

We set the number of steps M = 100. In the following simulations, we consider the local volatility
model (37) and the classical Black-Scholes model. The results are summarized in Table 6 and Table
7. In Figure 2 are depicted the optimal variance reducer for the local volatility model. Our numer-
ical results illustrate the effectiveness of our Newton-Raphson’s IS algorithm. In this example, the
computation time needed to achieve a given precision is divided by a factor 8 in comparison with
the crude Monte Carlo estimator.

Table 6: Down&In Call option in Local volatility model with X0 = 100, K = 115, L = 65, T = 1, σ = 5, r = 4%,
β = 0.5, dN = 966, n = 50, 000, M = 100.

Basis m Price MC Variance MC Price QIS Variance QIS

Constant 1 0.684 25.80 0.673 15.33
Legendre 2 0.711 27.92 0.662 4.58
(ShLeg) 4 0.683 25.66 0.684 3.46

8 0.686 26.59 0.685 3.35
Karhunen-Loève 2 0.680 25.38 0.696 5.22

(KL) 4 0.702 26.39 0.683 6.53
8 0.687 26.39 0.688 5.80

Haar 2 0.648 24.90 0.673 8.15
(Haar) 4 0.671 25.15 0.692 5.46

8 0.709 30.17 0.700 5.29

Table 7: Down&In Call option in the Black-Scholes model with S0 = 100, K = 115, L = 65, T = 1, σ = 50%,
r = 4%, dN = 966, n = 100, 000, M = 100.

Basis m Price MC Variance MC Price QIS Variance QIS

Constant 1 0.481 21.76 0.467 8.62
Legendre 2 0.455 19.25 0.469 3.54
(ShLeg) 4 0.474 21.03 0.477 3.43

8 0.451 19.96 0.470 3.39
Karhunen-Loève 2 0.466 21.36 0.459 5.51

(KL) 4 0.470 22.37 0.471 5.78
8 0.462 21.93 0.465 5.20

Haar 2 0.471 22.16 0.473 7.38
(Haar) 4 0.469 22.08 0.464 5.03

8 0.470 21.09 0.476 5.26
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